Article Ecology
Dengue-resistance Spreads in Mosquitoes
Satellites Spy on Fish Farms
Fukushima Birds Affected
Boozing for Better Health
Climate Conflict of Interest?
One Year On
Antarctic Invasion
Lions Up Close
More Maternal Effort Means More Robust Offspring
Pesticide Problems for Bees
Ants Share Pathogens for Immunity
Poisonous Shrooms Battle Cancer
Colony Collapse from Pesticides?
Insect Battles, Big and Small
Spotted: Emperor Penguins
Melting Ice Releases Ancient Microbes
Pigeon GPS Identified
It’s Raining Mice
Ocean Plastic Aid Insects
Can Fish Eco-Labeling be Trusted?
How Prawns Lure Prey
Food's Afterlife
A Greener Arctic
The Ecology of Fear
  Pigeon GPS Identified
Pigeons, sea turtles, spiny lobsters, and mole rats don’t need Google Maps or MapQuest to find their way home—they have built-in GPS. These animals and others rely on Earth’s magnetic field for orientation and navigation. But how their brains process magnetic information has been unclear.

Now, researchers have identified the neural source of magnetic sense in pigeons—single cells that encode three key positioning factors: the direction of a magnetic field, its intensity, and its polarity (north or south). The research, published today (April 26) in Science, is a first step toward understanding how animals, including humans, compute maps in their heads and could someday help clinicians treat individuals afflicted with spatial disorientation.

“The authors did a beautiful job” recording the neuronal activity, said Wolfgang Wiltschko of Goethe University in Frankfurt, the first scientist to demonstrate magnetic orientation in birds in the late 1960s, who was not involved in the research. “It’s a very stimulating paper.”

Last year, J. David Dickman and Le-Qing Wu at Baylor College of Medicine in Texas found that four major areas of the brain become active when pigeons respond to magnetic field changes: the vestibular region of the brainstem, the dorsal thalamus, visual regions in the cortex, and the hippocampus, known to be the site of spatial memory. Behavioral observations suggest that birds’ visual, vestibular, and auditory systems are all involved in magnetoreception, “so you would expect exactly these parts of the brain to be activated,” said Wiltschko. “If I were to construct a magnetic compass, I’d use these systems.”

Next, Dickman and Wu delved deeper into the brain to record the responses of individual neurons in these regions. Using seven awake pigeons, they recorded from 329 neurons in the vestibular area of the brainstem, while exposing the birds to an artificial magnetic field created by an open metal cube wrapped in wires and connected to a generator. The birds were also in the dark, so that there was no chance that the magnetic sense was being activated by the visual system, as has been proposed in the past.

When Dickman and Wu varied the direction of the magnetic field, its intensity, or its polarity, they recorded significant responses from 53 of the neurons tested. Different neurons responded to magnetic fields from specific directions, firing more frequently the more intense the field. “For the first time, we were able to quantify [magnetoreceptive] brain cells,” said Dickman. “Each cell is tuned to a different direction of the magnetic field in space—each has a maximum and minimum direction that it likes.” The cells also responded to field intensities from 20 microtesla (µT) up to 70 to 120 µT, a range that spans the Earth’s geomagnetic field of 25 to 65 µT.

But even with the cells underlying magnetoreception identified in pigeons, another question looms: what part of the body receives the magnetic cues and transmits them to the neurons? “We’re going after the receptor next,” said Dickman.

Scientists have proposed the retina, nose, and inner ear as the site of a receptor in birds. From ablation studies in which he lesioned the inner ear, Dickman believes that is the site of the magnetoreceptor, but Wiltschko said behavioral studies point to the visual system. The visual center of the brain is very close to the vestibular center, where Dickman’s team identified the magnetoreceptive neurons, so it’s possible that both are involved, said Wiltschko. “I’m really looking forward to what’s happening in the field,” he said.
Microbial Awakening
Little Fish in a Big Pond
No Sex Required
Old New Species
Beetles Warm BC Forests
Coughing Seashells
Marlboro Chicks
Fighting Microbes with Microbes
Fly Guts Reveal Animal Inventory
Cities Affect Global Weather Currents
Modeling All Life?
Killer Kittens
Opinion: Paradoxical Amphibians
Oil Additive Harming Seabirds
Diversity Defeats Disease
Icy Algae in a Changing Arctic
Native Frogs Beat Invasive Toads
Bridges for UK Water Voles
Mysterious Sea Lion Stranding Continues
Can CO2 Help Grow Rainforests?
Arctic Foxes Suffer from Seafood Diet
Plants Communicate with Help of Fungi
Ladybird Bioterrorists
Arctic Bacteria Thrives at Mars Temps
Mary O’Connor: Warming Up
Bird Bullies
An Ocean of Viruses
Science on Lockdown
West Coast Marine Threat
The Gigapixel Camera
Mixed Report for Oiled Salt Marshes
EPA to Regulate Greenhouse Emissions
Genetic Shift in Salmon
A Scientist Emerges
Life (Re)Cycle
How Green Are Your Fish?
School Teachers Release Invasives
Zoo Virus Swap
Mothers-In-Law and Menopause
Stalking Sharks
From Plants and Fungi to Clouds
Good Vibrations
Down and Dirty
Dogs Improve Beach Sanitation
A Funding Reboot
Agriculture-Ecology Initiative Announced
Evolving Dependence
Beard Beer
Opinion: Controlling Invasion
Natural-Born Doctors
Opinion: Fishy Deaths
A Celebrated Symposium