Article Ecology
Dengue-resistance Spreads in Mosquitoes
Satellites Spy on Fish Farms
Fukushima Birds Affected
Boozing for Better Health
Climate Conflict of Interest?
One Year On
Antarctic Invasion
Lions Up Close
More Maternal Effort Means More Robust Offspring
Pesticide Problems for Bees
Ants Share Pathogens for Immunity
Poisonous Shrooms Battle Cancer
Colony Collapse from Pesticides?
Insect Battles, Big and Small
Spotted: Emperor Penguins
Melting Ice Releases Ancient Microbes
Pigeon GPS Identified
It’s Raining Mice
Ocean Plastic Aid Insects
Can Fish Eco-Labeling be Trusted?
How Prawns Lure Prey
Food's Afterlife
A Greener Arctic
The Ecology of Fear
  Modeling All Life?
For most of its history, ecology has been dominated by small-scale field work and studies of specific ecosystems. Now, some ecologists are calling upon their peers to think bigger, and to bring the field into the era of Big Science. And it does not come much bigger than computational ecologist Drew Purves’s suggestion of modeling all life on Earth.

Purves, a researcher at Microsoft’s computer science research center in Cambridge, United Kingdom, is building a prototype that simulates entire ecosystems across the planet. Known as the Madingley model, Purves’s simulation captures the life, growth, migration, interactions, and death of individual creatures, and the flow of energy and nutrients between them.

Rather than modeling specific species, the Madingley model places them into broad bins, like carnivore or herbivore, diurnal or nocturnal, birds or mammals. And rather than simulating every individual—an impossibly large task for modern computing—the model uses “cohorts” to represent similar clusters of individuals, such as fish shoals.

Purves hopes that this and other “general ecosystem models” (GEMs) will provide a better understanding of how different ecosystems fit together, and how their properties “bubble up from the underlying principles,” he said. They may also help policy-makers to decide how best to conserve our fragile planet, by showing the effects of hunting, invasive species, and changing climates.

It sound ambitious, perhaps unrealistically so. As Bob Paine, a marine biologist from the University of Washington, said, “it’s mission impossible.” But Purves argues that we have enough data to get started, such as ratios of predators to prey in specific niches, and the metabolic rates and life-spans of many species. “The ecological community has a tendency to assume that it isn’t possible and we want to challenge that,” he said. “You don’t know until you try.”

He points to the climate change community as an example of how big models can change the way research is done. “There was a lot of skepticism about whether there’d be a global climate model just until the first one was built,” he said. Now, such models are the status quo in climate science and regularly feed into the work of the Intergovernmental Panel on Climate Change. Purves hopes his large-scale model will bring the same value to ecology, and recently laid out his views in a comment piece in Nature. But not everyone is convinced. “I don’t hold big ecology as being terribly useful for solving the world’s problems,” Paine said. “And in a zero-sum financial game, it represents a raid on the national treasury.”

Global models hinge on the interactions between species, Paine argued, and discovering those interactions depends on the small-scale, muddy-boots ecology he has long championed. For example, in the 1960s, Paine coined the concept of a keystone species—one that has a disproportionate influence on its ecosystem—after throwing starfish off a beach and showing that mussels would take over. These interactions are unpredictable, and discovering them “requires intense biological studies, often of single species,” said Paine.

He also rails against the approach of aggregating species into “gross, clumsy units.” Not all birds or carnivores or fliers behave in the same way, he said. Some species of starfish act as keystones but not others, and even those will influence their communities to different degrees depending on what part of the world they are in. Conversely, species from disparate categories can fulfil the same roles. “You can have a big crab in the Pacific that occupies the same niche as a British earthworm,” Paine said. “That’s invisible in the [Madingley] model and takes a lot of work to discover.”

Josh Tewksbury, an ecologist at the Luc Hoffmann Institute in Switzerland takes a more pragmatic view. Although he is pessimistic that Purves’s approach will inform many policy decisions, Tewksbury believes it could promote collaborative data collection and open-access data sharing—areas where ecologists are lagging behind other fields.

“Academic ecologists are a privileged lot,” he said. “We get to follow our ideas and our passions to the most spectacular places on the planet. We might consider spending a bit more time deciding what data we should collect when we go there, and making sure that what we bring back from those adventures is available to all.” And pausing to assess current methodologies doesn’t mean the end of field work, he added. “It may mean we end up doing more of that.”

Purves agrees. He supports small-scale studies, but he thinks that a global perspective will be useful in pinpointing gaps in our knowledge and galvanizing field ecologists to address them. “Again, in the climate community, people are studying topics because those topics have been shown to matter in these large models,” he said. “We hope that we give people a context.”
Microbial Awakening
Little Fish in a Big Pond
No Sex Required
Old New Species
Beetles Warm BC Forests
Coughing Seashells
Marlboro Chicks
Fighting Microbes with Microbes
Fly Guts Reveal Animal Inventory
Cities Affect Global Weather Currents
Modeling All Life?
Killer Kittens
Opinion: Paradoxical Amphibians
Oil Additive Harming Seabirds
Diversity Defeats Disease
Icy Algae in a Changing Arctic
Native Frogs Beat Invasive Toads
Bridges for UK Water Voles
Mysterious Sea Lion Stranding Continues
Can CO2 Help Grow Rainforests?
Arctic Foxes Suffer from Seafood Diet
Plants Communicate with Help of Fungi
Ladybird Bioterrorists
Arctic Bacteria Thrives at Mars Temps
Mary O’Connor: Warming Up
Bird Bullies
An Ocean of Viruses
Science on Lockdown
West Coast Marine Threat
The Gigapixel Camera
Mixed Report for Oiled Salt Marshes
EPA to Regulate Greenhouse Emissions
Genetic Shift in Salmon
A Scientist Emerges
Life (Re)Cycle
How Green Are Your Fish?
School Teachers Release Invasives
Zoo Virus Swap
Mothers-In-Law and Menopause
Stalking Sharks
From Plants and Fungi to Clouds
Good Vibrations
Down and Dirty
Dogs Improve Beach Sanitation
A Funding Reboot
Agriculture-Ecology Initiative Announced
Evolving Dependence
Beard Beer
Opinion: Controlling Invasion
Natural-Born Doctors
Opinion: Fishy Deaths
A Celebrated Symposium